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Therefore, the possibility of bounded resonances depends not only on 0 but also on a: 
as 0-o a bounded resonance in mass is possible at any frequency o> ~12. 

The study of the dependence of the contact stiffness on the frequency is of independent 
interest. Such results have been obtained earlier for large rectangular stamps (see /5/ and 
the bibliography given there). Curves of II-‘,(o) I, et(o) are presented in Fig.2 for different 

values of a. 
As we noted above, the fact that for small a the quantity J', remains constant over a 

broad frequency range is essentially new. As before, J', = u at the layer natural vibration 
frequencies (o=2.89; 2.93; 7.64; 8.82) including also for double &.$;a on the left boundary 
of the reverse wave ranges (the dependence p, (@ in the reverse wave range was given earlier 
in a coarse scale*). ("Babeshko V.A., Glushkov E.V. and Glushkova N.V., On the Resonance 
Properties of a Stamp Elastic Layer System. Unpublished Manuscript 8329-B VINITI. December 

4, 1985.) 

The authors are grateful to V-A. Babeshko for discussing the results. 
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PULSE PROPAGATION iN MEDIA WITH SMALLVELOCITY DISPERSION AND 
RELAXATION TIME SPECTRUM OF THE FORM i/7. EXACT SOLUTION* 

S.Z. DUNIN andG.A. MAKSIMOV 

Pulse propagation in a medium whose dispersion-dissipative properties 
correspond to the presence of relaxation mechanisms in the medium, whose 
relaxation times form a spectrum of the form g(@-1/r, is considered. 
In the case of small velocity dispersion an exact solution is obtained 
for the pulse shape and it is shown that it is equivalent to the 
description of pulse propagation in a medium with "EC-memory". 

Acoustic wave propagation in real media can often be considered within the framework of 
a linear approximation of hereditary elasticity theory (HET) /l/. Phenomenological HET coef- 
ficients can be obtained using the theory of internal parameters /2/ characterized by relax- 
ation times to a thermodynamic equilibrium state. 

Exact solutions are known only for certain rheological models of media: a standard body 
131 characterized by a single relaxation time, its limiting case of Voigt /4, 51 and Maxwell 
/6, 7/ media; in the case of small velocity dispersion for the model of a medium with "E-memory 

*PpikZ.Matem.Mekhan.,54,3.480-484,199O 
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/8, 9/. Certain solutions can be obtained using a modified HET /lo/* (*See also: Nigul.U., 
The modified theory of viscoelasticity. Preprint, Academy of Sciences of the Estonian SSR, 
Tallinn, 1983.) in which modified HET kernels (MK) associated in a definite way with ordinary 
HET kernels are selected as the initial one. Thus, MK of exponential form correspond to a 
medium with "E-memory", and MK in the form of the difference between two integral exponents 
correspond to a medium with "Ei-memory" /lo/; the solution is obtained for the last of these 
media for certain particular values of the parameters. 

A number of experimental facts are not explained successfully in the description of wave 
propagation in geo- and biomedia within the framework of the simplest rheological models, 
for instance, the linear dependence of the wave damping factor on the frequency aver a broad 
frequency range /ll-15/. The following explanation exists for this fact within the framework 
of linear theories: both geo- and biomedia are distinguished by the complexity of their 
microstructure and its hierarchy consequently, relaxation mechanisms can be associated with 
the most diverse structural features of such media, and consequently, their relaxation times 
form a spectrum. By selecting the parameters of this spectrum, it can be arranged that a 
linear dependence of the damping factox on the frequency is obtained over a fairly broad, but 
bounded, frequency domain. It is shown in a number of papers /13, 141 that the relaxation 
time spectrum should have the form 6 (7) - r-1 for a satisfactory description of experimental 
data. 

1. Small-amplitude acoustic waves are described by the equations of linear elasticity 
theory with an equation of state of hereditary type /ll/ 

U%j (r9.t) = f [Sgj (r, 8’) M (t - t’) $ 6*jS,i (r, t’) Id (t - t’)] dt’ 
I? 

Considering the variety of dispersion-dissipative properties of media that can be 
described in the terminology of exponential relaxation mechanisms, the general form of the 
kernels M V) and L (t) can be written in the form 

M (t) - L (t) - Pox(t) 

where A is the velocity dispersion, and c, and q, are the largest and smallest possible 
wave propagation velocities (longitudinal or transverse) in the medium. 

The relaxation time spectrum g (a) possesses the following properties: 

This latter property is associated with the fact that the contribution of processes with 
zero relaxation time corresponding to ideal elasticity is represented separately in the form 
of a delta-function. 

Me will examine plane wave propagation. It has been shown 1161 how a solution of problems 
with more complex geometry can be obtained using the solution of this problem. 

Green's function of the plane problem obeys the following wave equation (the Laplace 
transformation (t-p) is made in the time variable): 

[82/ass - Ka @)I I (z, p) = 6 (4 K* (I-‘) = pa/, (P) 

whose solution can.be represented in the form of a Mellin integral 

I(t,s)=~Sexp(pt--K(p)}dp, y=(-im+im) 
Y 

The properties of this integral are determined by the form of the dependence 

0.9 
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III the case of the relaxation time spectrum g(c) = (rln(b/~))-~, zE [a, bl (the Spectrum 
normalization conditions is taken into account), we obtain 

II @) = c,-lp [I - A (6 - a)-‘P (pf l-*‘*, 

P (p) = p-l ln ((bp + 1)/&p + I)) 

w-4 

The function P(p) is analytic in the domain Rep> --lib and, therefore, attains its 
highest value on the domain boundary namely, for p I;: -116. Consequently, for small velocity 
dispersion A<1 a domain Rep>&> --lib exists in which the absolute value of the second 
component in the square brackets in 11.2) will be less than one. The expression 

6 = -_b-1 [i - exp {-A-" (1 - a/b))] 

can be obtained to estimate the quantity 6, from which it follows that 6~ (--lib,Ol. In 
particular, expansion in the small parameter A<1 is possible in the domain Rep>O. 
Taking account of the first two terms in this expansion, we go over to evaluation of the 

integral (1.1) - 

Utilizing 
transformed to 

the Efros theorem on a generalized convolution /17/ this integral can be 
the form 

Here r (4 is the Gamma function, I,(z) is the Bessel function of imaginary argument, 
and 0 (z) is the Heaviside unit function. Evaluating the integral (1.4) /18, 19/, we obtain 

(1.5) 

where Jr(c, fi, z) is the degenerate hypergeometric function of the first kind (the Kummer 
function). 

Expression (1.3) is formally identical with that which has been obtained for a pulse 
propagating in a medium with '%-memory". For 8 = 1 the solution presented in /lo/ is 
obtained both directly from (1.3) and from (1.5) since the relationship ,F,(a,a,z) = 8 /20/ 
holds, say. 

2. Note that in the limit as b+aG:r expression (1.5) is identical with the expression 
corresponding to the solution for a medium with a single relaxation time z (i.e., a relaxation 
time spectrum of the form g (a') = 6 (6 - e)). Indeed f2-t~~ as b-+a. Consequently, by 
using the limit relationship for the degenerate hypergeometric function /20/, we obtain the 
expression 

Z(t,z)=exp{-4-Q }-${0(tV0(21/3} (2.1) 

that agrees in accuracy with the result in /91. 
We will examine other limit cases resulting from representation (1.5) which we rewrite 

for convenience, in the form 

Z (t, Z) = (+r 6 (t’) _i- C&(+)” exp I-- -$) ,F, (Q + I,% at’) @@‘f 

The properties of the Kummer function /20/ were taken into account here. 
It follows from relationship (2.1) that a pulse front exists that moves with velocity 

c, (i.e., I (t, 5) 3 0 for t < x/c,). The first component in (2.2) describes the predecessor 
which propagates together with the front, that damps out exponentially with distance as 
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exp {-Q In (b/a)). The principal part of the pulse (its body) is described by the second term 
in (2.2). 

We will use the representation of the function F 
/20/ to clarify the nature of the behaviour of the hod; bf 

in the different limiting cases 
the pulse. Utilizing the expansion 

of the function lF,(a, fi, 2) for small values of z, it can be seen that in the neighbourhood 

of the front + (Q + i)t’h<f the pulse amplitude increases with distance from the front if 

the pulse has traversed a sufficiently large distance Q> (b + a)/(b - a), and decreases 
otherwise. We note that the same pulse behaviour is also observed near the front for a medium 
with a single relaxation time but at distances Q'2 'IS. 

By using the expansion of the function $1 (a, P, 2) for large values of z we obtain a 
profile of the body of the pulse for large times hi?’ > 1 (the asymptotic representation of 
the Gamma function is also used) 

(2.3) 

For b > a the exponent in this expression is always less than zero. Therefore, relation- 
ship (2.3) describes the exponentially damped "tail" part of the pulse. 

At sufficiently large distances from the source Q>l for time intervals satisfying 
the condition I<?$< Q/a, such that the following asymptotic form /20/ 

IF, (a, I% 4 = r (P) e+ (z (j3/2 - c#.-B~Z~g-r (2 1/z (812 - a)) 

a>l, IzI=1~/2---I~,O<<<'/3 

is valid for ,P,(a, fi, z), the representation 

can be obtained that is identical with the representation (2.1) in the limiting case as b-ta. 

The expression (2.4) provides no description of the most interesting domain where the pulse 
body has a maximum. This can be seen if the asymptotic representation of the Bessel function 
of imaginary argument is used and the value of the exponential is determined at a point where 
it reaches a maximum. Namely, for t’=4Qhlp2 the expression in the exponential is less than 
zero is all cases except b -= a. 

To obtain an expression describing the neighbourhood of the maximum of the pulse body we 
use representation (1.4). The contribution from the neighbourhood of the lower limit of 
integration can be neglected at large distances Q>l because of the second formula in (1,4); 
then its asymptotic representation can be used instead of the Bessel function of imaginary 
argument in the last relationship of (1.4) under the condition b/a [ht’/(Q - l)j'/a 3 1. Integrat- 
ing with respect to 5 in (1.4) f a ter this /21/, we obtain for the pulse body (the predecessor 
is the same as in (2.2)): 

I (t, I) = + (-&)” r (~&j”a) (&y exp (- $1 D_zn_,,, (- )/2ht’) 

where D,(z) is a parabolic cylinder function (D-,-I,, (z) SE U (a, 5) is a Whittaker function). 
Using the asymptotic forms of the Gamma function for Q> 1, as well as the Darwin expansion 
for the Whittaker function /20/ (a> 0, xx+ 4a>i), we obtain after reduction 

z (t, 2) = (2nt’pA-‘i4 exp {--l/&’ + ‘/,Wh’~* - 
Q In (b/a) + 52 In [I + I/, (ht'/Q) (1 + A’/*)]}, 

A = 1 + ciQ/(Pd’) 

(2.5) 

The expression under the exponential sign in (2.5) has a zero maximum for 1' = Q(b - a) 

as will be shown below. Therefore, relationship (2.5) describes the pulse body in the neighbour- 
hood of its maximum. The amplitude of the latter falls off as the traversed distance increases 
occurs according to the power law 

(2nQ (P - a2))-'/~ - (nAz (b + a)/~,)-‘1~ 

3. A number of the results obtained above for the analysis of the exact solution (1.5) 
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can be obtained by a simpler method by using approximate methods directly to evaluate the 
integral (1.1). For instance, the structure I(t,s) in the neighbourhood of the front is 

determined by expanding K(p) as p-00 and has the form 122, 23/ 

I (t, 5) = (a/b)Q[s (t’) + (an/t’)“*I, (2 (ARt’)“‘) e WI (3.1) 
A = h - 3/,A (b - a)-’ ln2 (biaj 

Expression (3.1) in the case when A41 is in complete agreement with (2.4) and (2.2). 
At large distances from the source @>)I) an approximate expression for the pulse 

profile can be obtained by using the saddle-point method: 

I@, 4 = PfiQS, (P,)jP exp (BS (Pn)). 

an (b - 4 bPn+i 
S(P”)=-(p,b+l)(p,a+i)-ln-’ ‘a hd = 

(b - 4 (2abpn + b + a) 

UP, + * (p,,b ‘r l)‘(p,a + I)2 

PTl = -PI2 + hA11*/2 

(3.2) 

Expression (3.2) is completely equivalent to (2.5). This can be seen by expressing all 
the parameters in terms of the ratio Pit’ and carrying out the necessary reduction. 

It follows from the last formula in (3.2) that the correspondence between the saddle 
point P,,> --lib and the parameter Pit’ is one-to-one. Consequently, the maximum of the 
pulse body can be determined from the condition S'(p,)= 0, from which it follows that pn = 0. 
This corresponds to the value t’=Q(b-a). 
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ON THE PLASTIC LOADING PROCESS BEHIND AN UNLOADING SHOCK FRONT* 

A.G. BYKOVTSEV 

The problem of elastic wave refraction in an elastic-plastic half-space 
(EPH) in the active loading domain has been investigated /l-4/ for 
different models of an elastic-plastic body. The problem has been 
solved /5/ for refraction of a pure shear elastic wave that has a 
profile of steps of finite length in an EPH in both the active plastic 
loading domain and in the unloading zone under the assumption that the 
material behind the unloading shock (US) is in the elastic state. It is 
shown below for this problem that a plastic loading process can be 
realized behind the US front and a solution is constructed in the 
secondary plastic flow zone. 

1. R medium is under antiplane deformation conditions when a pure shear wave propagates. 
The displacement velocity vector w is directed along the x3 axis and depends on the variables 

51. 22 and the time t, and the stresses r1 = u13 (I~, x,; 1); zg = u'2s (s,, .Q, t) differ from zero. 
Henceforth we will confine ourselves to investigating selfsimilar solutions of the equations 
of the dynamics of an ideal elastic-plastic body that depend on two variables .r = 21 - et and 
y = X8. In this case the equations of the characteristics and the relationships along the 
characteristics of the system of motion equations have the following form /3.!: 

in the elastic domain and unloading zone 

x + xy r= const, xw - r, '7: const 

x - xy = const, xw + rt2 = const 

yr=~onst,2,~w=f(y),x;=~MB-1,M=~~~a,a=~~ 

(1.1) 

(1.2) 

(1.3) 

in the active plastic loading domain 

dy (M + cos 0) = -sin 8&r, e + Mw = const 

dy(,W - cos 6) = sin 8&z, @ - WW = eon&, tl = sin 8, 

z2 = cos 0 

Here p is the density and )_I is the shear modulus. 
Equations (l.lf-(1.5) are written in dimensionless variables that will be used later (to 

simplify the writing the bars above the dimensionless variables are omitted, and k is the yield 
point) 
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